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EMITTANCE GROWTH FROM BEND/STRAIGHT TRANSITIONS
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Abstract

In certain applications such as heavy ion fusion,
intense beams with large space charge tune depressions
will be transfereed from linear transport sections into
bent transport sections. In some designs, such as re-
circulating induction accelerators, transport through
bends will occur over thousands of betatron periods
and in some driver designs the final transport through
a bend will oceur over tens of betatron periods. Over
such distances, non-linear space charge forces are ex-
pected to produce particle phase space distributions
which are close to thermal equilibrium. especially with
respect to lower order moments. Here we calculate
the properties of thermal equilibrium beams in bends
assuming uniform focusing, as a function of two di-
mensionless parameters We also outline the calcula-
tion of the change in emittance for a beam that is
initially in thermal equilibrium in a straight transport
section, and that finally reaches thermal equilibrinm in
a bent system, using an energy conservation constraint
to connect the two states.

I. INTRODUCTION

The conditions for equilibria of beams in a bent
system were determined in ref. {1], under the assump-
tion of uniform focusing and bending. with dispersion
included through linear order in the equations of mo-
tion. The equilibria were determined by requiring that
the derivatives of the second order moments with re-
spect to path length vanish. A further assumption of
this calenlation was that space charge was distributed
uniformly n an elliptical cross section, although as
pointed out in refs. [2,3], distributions that are func-
tions only of 22/(2%) + y*/(y*) are also eXact solutions
to the moment-equations of ref. [1]. where z is the co-
ordinate in the-bend plane, y is the out-of-plane coor-
dinate, and () indicates average over the distribution.

Recently, in refs. [4,5] equilibrium distributions
have been calculated that are fully self-consistent. so-
lutions to the coupled Vlassov and Poisson equations.
Distribution functions which are functions only of the
single particle transverse hamiltonian £ are solutions
of the Vlasov equation, since i, is a constant of the
motion. In refs. [4,5], the properties of a generalized
KV distribution, (i.e. a delta-function of ~;) were in-
vestigated in detail. Although, the KV beam in bends
is interesting because of its analytic tractability, beams
which have equilibrated (e.g.due to space charge non-
linearities), are likely to be better characterized
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by thermal equilibrium distributions. Although longi-
tudinal/transverse coupling can be strong [6], it is of
general interest to examine beams with distinct tem-
peratures in the two directions.

The purpose of this paper, is to examine thermal
equilibrium beams in bends with longitudinal temper-
atures which are not necessarily equal to the transverse
temperatures (and hence the final temperature equili-
bration has not necessarily been reached.)

II. THEORETICAL MODEL

Equilibrium distribution functions f which sat-
isfy the Vlassov/Poisson equations, for a system with
constant focusing and bending radius have been found
previously having the following form (refs. [4,5]):

f = f(hy)exp[—(6/60)%] (1)

where 2hy = p? —}—p;‘“: +hG (2 +y* )+ 2g0—2x6/p. Here
f=dN/dedydp,dp,dé. is the number of particles per
clement of phase space, with the in-bend plane (hori-
zontal) coordinate x. and vertical coordinate y, dimen-
sionless momenta p;, normalized to the design mo-
mentum in in the longitudinal direction ) = yymuy.
The quantity & = (P, — Py)/ Po, is the fractional de-
viation of a particle with longitudinal momentum /5
from the longitudinal design momentum, and m is the
particle rest mass. The quantity kyo 1s the zero current
spatial betatron frequency in the postulated uniform
focusing channel, and p is the radius of curvature in
the uniform bending field. The quantity @ is the elec-
trostatic potential. and g = ¢/53med.

In this paper, we focus on the distribution of the
form:
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Here, 1y = k71 /+imoi where Ty is the comoving

heam transverse temperature, k;, is Boltzmann’s con-
stant. The density n(z,y) is given by:
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= n(0,0)exp

Here = 68x2/2k%0p2TL, and represents the effects of
dispersion in a bend on off-momentum particles, and
A¢ = ¢(xz,y) — $(0,0). We find solutions to the non-
linear poisson’s equation V¢ = —¢n(z.y.#(z,y))/eo
for which the beam pipe (radius #,) is sufficiently far
from the beam edge such that image forces can be
ignored.



III. DIMENSIONLESS FORM OF MODEL

Without dispersion (5 = 0) the beam density pro-
files in this problem recover azimuthal symmetry. In
that case, the density profiles can be characterized by a
single parameter (sec e.g. [8]) which we define here as
ag = n(0,0)/ncoq. Here n(0,0) is the central density
and Ncoq 18 given by: neoq = 2y mvdenk’,/q?. The
quantity nceq is the density of a beam with focusing
constant kgo, but at zero 7, and zero 7.

When dispersion is added, the second dimension-
less parameter 7 appears and all solutions may be
characterized by the two dimensionless parameters aq
and n. We define X = kyoz/T> Y = kyoy/T?,
¢ = gofT'L. and AP = (X, Y) - 9(0,0). We may
then cast Poisson’s equation into the dimensionless
form:

feA) FoRLi)
Here, ¥ = (1 — 9)X?/2 + Y%/2 4+ A®. The bound-
ary condition is ® = (0 at X*> +VY? = R;*:, where R, =

= —2apexp —V.

ko r,,/’]‘i/? is the dimensionless pipe radius. Note that
we have neglected the curvature terms in Poisson’s
equation, which is appropriate when r, << p. Note
also that R, adds a third dimensionless parameter to
the problem, but results presented here will be in a
regime where R, is large enough se that the beam pa-
rameters are nearly independent of R,. We solve this
equation numerically, using standard SOR techniques.

Once a solution is ohtained, it is nseful to calcu-
late dimensionless moments of the density distribution:
Ii(ao,n) = [ [dXdY exp —¥;

Ixo(eg,m) = [ [dXdY X? exp-¥; -

Iy2(ag,n) = [ [dXdY YV exp -V,

and fo(wg,n, Rp) = [ [dXdY @ exp—¥. Here,the
mtegration occurs over the interior of the beam pipe,
NP+ YT < R;':: and the explicit dependence on ay
and 9 is displayed. From these gqnantities, averages
can be obtained: (\72) = [y/1, (Y*) = Iys/1,, and
(‘b) = /q,/[].

Using these integrals and averages, which depend
only on ay 7, (and in the case of [4, R,), we may
calculate physical parameters of the heam. For ex-
ample, the current | = quongpqaa’L 11 /k3,, the per-
veance K = ¢l [2wcyrimed = agl'L L /7, x-emittance
e = {2 (pZ) — (ep)")1* = 4T (Ix2/1)'/?, and
space charge parameter S = 4K (2?)/c} = K/4T, =
agly [47. The rms tune depression o, /0y = (L/(X*H+
M2, and o, /ag = 1/(Y )2

IV. RESULTS
Figure 1 displays a surface plot of the normalized
beam density with a relatively large dispersion, and
moderate tune depression. The heam has an apparent
elliptical shape with a flattop similar to the thermal
equilibriuni beams in straight transport sections (cf.

[8])-

Figure 1. Scaled density o(X,Y) = n(X,Y)/n01d
vs. X and Y for the parameters ay = 0.974, and
n = 0.05.
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Figure 2. log(/)) vs. log(1 —ay) (upper) and log(\'?)
vs. log{l — ag) (lower) for five different values of 3
{starting from the left-most curve and proceeding to
the right, 5 = 0.00, 0.01. 0.02, 0.03, and 0.04).

The curves asymptote to ay = | — /2 for large
space charge depressions (derivable from the envelope
equations below with zero emittance). and /7 tends to
27/y/T =9, while (X?) tends to L/(1 —5) in the limit

of zero space charge.
IV. EQUILIBRIUM EQUATIONS

[n ref. [1], moment equations including dispersion
were derived, and in ref. [9], the effects of images on a
uniform density elliptical beam in a circular pipe were
derived. The envelope equations with these two effects
included (in addition to the usual external focusing,
space charge and emittance terms are):

d’a ” ¢ 4 2K A(a® = b%)a
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Here a = 2,/(22) and b = 2,/(y?). Setting d?a/ds” =

d*b/ds* = 0, and transforming to the dimensionless
variables, we find the qulilibl‘illln moments satisty:
0=—(1-n/X%+ tely
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[t has been found that in all cases examined, that
given [y, and solving for (X?) and (¥Y), these equi-
librium equations accurately predict the moments de-
rived from the SOR code, and the final term accurately
gives an indication of the importance of image charge
effects on the solution.

V. EMITTANCE GROWTH FROM

BEND/STRAIGHT TRANSITIONS

As discussed in [1], if a beam abruptly enters a
hend from a straight transport section, off momen-
tum particles will tend to oscillate in » about centers
which are displaced from the design orbit of the ma-
chine. This causes an envelope mismatch, and if the
non-linear space charge forces are sufficiently strong to
allow phase mixing and energy equi-partition hetween
the & and y directions, then a new equilibrium will re-
sult. in ref. [1], the moment equations yield an exact
energy invariant, when kyo is independent of s, un-
der the assumption that density is constant on nested
ellipses (n{z.y) = n(x?/(z?) + y*/(¥"))). More gen-
erally, a dimensionless average transverse energy may

he written:

HL:%HI—mMXﬂ+WYﬂ+vM+2)
Because of the choice of normalization. it is the quan-
tity H; 7T, which is conserved. Note that the factor
of 1/2 multiplying (db) is necessary to correctly calcu-
late the self-assembly energy from space charge. To
calenlate the the change in beam parameters from a
straight/bend transition, we first calculate the current
[ and the transverse energy H; 7T of the beam in the
straight section. Becanse we tabulate H (e, 1. Ry)
for fixed R, we must account for the change in R,
as T changes even though r, remains fixed. But
Hi(oog.ng, Bpp) = Hi(eop.ny, Rype) + (K/210 1)
{In R,y —In Rpi), where subscripts i, f indicate initial,
final. For kgo and r, held constant. we find
TJ_,j[HJ_(agi, n =0, Rpi) + (1‘(/4T_Ll‘) In [{/T_Li] =

Ty y[Hy(eop,np, Rys) + (K/4T ;) Imn K/T4]. For a fi-
nite valie of , we iterate 7', and ag. until the current
and this relation for H | is satisfied. This allows cal-
culation of all final beam parameters and using (6*) =
(1 4 n(X2))63/2, we may a posteriori. determine the

initial value of &,. The change in emittance caleulated
using this algorithm agrees within numerical accuracy
to the calculation done using the moment equations in
ref. [1] and compared with simulations in ref. [7].
VII. CONCLUSIONS

We have solved the self-consistent Vlasov Poisson
system for beams in bends with thermal distributions,
and with temperatures not necessarily equal in the lon-
gitudinal and transverse directions. We have charac-
terized these beams by two dimensionless parameters
g and n and have graphed two of the quantities which
characterize the solutions. We find that such beams
have profiles which are constant on nested ellipses, to
within numerical errors when the heam pipe is suf-
fictently large. This validates moment and envelope
equations in refs. [1] and [3] for this class of beams.
Emittance growth from bend/straight transitions, us-
g energy and current conservation constraints was
found to be the same as that cafeulated in ref. [1]
again to within numerical uncertainties.
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